
Anatomy and Geometry Constrained
One-Stage Framework for 3D Human

Pose Estimation

Xin Cao1,2 and Xu Zhao1,2(B)

1 Department of Automation, Shanghai Jiao Tong University, Shanghai, China
2 Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China

{xinc1024,zhaoxu}@sjtu.edu.cn

Abstract. Although significant progress has been achieved in monocu-
lar 3D human pose estimation, the correlation between body parts and
cross-view geometry consistency have not been well studied. In this work,
to fully explore the priors on body structure and view-relationship for
3D human pose estimation, we propose an anatomy and geometry con-
strained one-stage framework. First of all, we define a kinematic struc-
ture model in deep learning framework which represents the joint posi-
tions in a tree-structure model. Then we propose bone-length and bone-
symmetry losses based on the anatomy prior, to encode the body struc-
ture information. To further explore the cross-view geometry informa-
tion, we introduce a novel training mechanism for multi-view consistency
constraints, which effectively reduces unnatural and implausible estima-
tion results. The proposed approach achieves state-of-the-art results on
both Human3.6M and MPI-INF-3DHP data sets.

1 Introduction

Human pose estimation is a fundamental task in computer vision and has been
studied for decades. It refers to estimating human anatomical key points or parts
and supports many applications, such as human-computer interaction, video
surveillance, augmented reality, sports performance analysis and so forth [1].

In traditional way, some approaches try to learn a concise low-dimensional
embedding [2] of high-dimensional 3D pose structure space to solve this prob-
lem. Pictorial structure model [3] is another representative way to model body
structure, where the joints and their relations are represented as vertexes and
edges respectively in a non-circular graph. Actually, tree-structured model is the
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Fig. 1. Representation of human joints and bones in a body tree structure, different
colors indicate different hierarchy levels. (Color figure online)

most popular pose representation and had been well studied in the traditional
methods. For example, Yub et al. [4] proposed a kinematic tree pose estima-
tion method along with the RTW expectation, where the joint positions are
determined sequentially according to the typical skeletal topology.

Recently with the development of Deep Learning (DL) and the emergence of
large scale 3D pose data sets [2,5], many state-of-the-art methods [6–10] have
been proposed for 3D human pose estimation. These methods can be simply
divided into two categories. In the first category, 3D pose positions are directly
regressed from raw images. While in the second category, usually a well-trained
2D pose network is used to estimate 2D joint positions, and then a following
2D-3D lifting network is used to further acquire 3D poses.

Despite the remarkable progress that has been achieved, we argue that most
of the existing 3D human pose estimation methods in DL framework treated
the body joints independently and overlooked the structure information and
the correlation between body parts. Seldom method utilizes kinematic structure
information. Besides, current popular 3D human pose data sets like Human3.6M
[2] and MPI-INF-3DHP [11] are captured in multi-view settings. However, the
geometry information that can be extracted via multi-view consistency con-
strains have not been well studied yet.

To address the above mentioned issues, we propose an anatomy and geome-
try constrained one-stage framework which impose the anatomy prior and fully
explore the geometry relationship for 3D human pose estimation.

In fact, the human body is like a tree structure. Suppose that the hip joint
is a root node, according to the distance to the root joint, we can define six
hierarchical levels of human body joints as illustrated in Fig. 1. Usually the
motion range of the leaf node joint is larger than its parent node joint, so it is
more difficult to estimate its 3D joint locations. Therefore it is intuitive to infer
the location of the child node joint as a dependent valuable of its parent node
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joint’s location and hence get more plausible results. To this end, we first define
a kinematic structure model in a deep learning framework which represents
human joint positions by the root joint position and each joints’ transformation
matrices relative to their parent joints. In this way, we can obtain the position
of a joint by multiplying the transformation matrix to its parent joint along
the way to the root joint following a kinematic tree. To simplify the learning
process, we further decompose the transformation matrices into rotation angles
and translation parameters.

To avoid the error accumulation with the expansion of the kinematic tree,
following the idea of Newell et al. [12], we adopt bone-length loss [13], which
usually is reliable information and acts as intermediate supervision during the
training process. In addition, we bring up a novel bone-symmetry loss function
based on the symmetry of human’s left/right parts to penalize the inequality
between the left/right limbs. These two loss functions are both based on body
anatomy prior and with which some implausible results are effectively removed.

Besides, in order to fully explore the cross-view geometry relationship, we
propose a multi-view consistency constraints algorithm to study the latent
pose representation. Pose estimation results of the same person from different
camera views are mapped to a latent space to encode the pose information
and then the similarity between them is computed. In this way, the model is
required to output the same pose representation for multi-view inputs, which
implicitly explores the geometry information from different views and strengthen
the generalization ability of the model.

Our contributions can be summarized as follows:

– We propose a one-stage deep learning framework with anatomy-aware kine-
matic structure model, by which human body structure information and
anatomy prior can be captured effectively.

– We show that adding multi-view consistency constraints into the one-stage
framework is able to explore the geometry relationship and reduce implausible
results for 3D human pose estimation.

– Quantitative and qualitative experiments are conducted on public 3D human
pose estimation data-sets, and the results demonstrate the effectiveness of
our proposed method.

2 Related Work

Here we will briefly review the two main streams of 3D pose estimation solutions,
the one-stage methods and the two-stage ones.

2.1 One Stage Methods

One-stage methods usually directly regresses 3D pose positions from raw images
[6–9,13,14]. According to the final representation of human pose, this method
can be further divided into regression-based and detection-based sub-categories.
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Regression based methods directly map the input image space to the output
joint positions. Li et al. [15] proposed a multi-task learning task which simulta-
neously conducted joint point regression and joint point detection tasks. Tekin
et al. [16] introduced an auto-decoder model to learn a high-dimensional latent
pose representation and account for joint dependencies. After that, the latent
representation was mapped back to the original pose space using the decoder.
The regression based method usually obtained unsatisfactory performance,
because mapping raw image to the pose space is a highly non-linear process
and ignores the spatial relationship between body parts. Besides, the detection
based methods regard the human pose estimation problem as a detection prob-
lem and usually output a heatmap for each joint. Pavlakos et al. [17] proposed a
fine discretization of the 3D space around the human body subject and trained
a convNet to predict per voxel likelihoods for each joint. To improve the initial
estimation positions, they used a coarse-to-fine scheme to further improve the
results. In order to overcome the quantization error of the argmax operation,
Sun et al. [7] proposed an integral regression method to take the expectation of
the heatmap as the output 3D joint locations.

Due to the lack of large-scale in-the-wild 3D human pose datasets, there are
also some researches for weakly-supervised and unsupervised 3D human pose
estimation. Zhou et al. [6] used mixed 2D and 3D labels in a deep neural network
which presented a two-stage cascaded structure. 2D datasets does not have 3D
labels but with diverse in-the-wild images, and hence acted as weak labels for
3D pose estimation. Yang et al. [8] proposed a multi-source discriminator to
distinguish the predicted 3D pose from the ground truth. Rhogin et al. [18]
introduced multi-view constraints as weak supervision and trained the system
to predict the same pose from all views.

As for the kinematic related works, Mount et al. [19] defined the kinematics or
forward kinematic as the problem of determining where a point is transformed as
a result of the rotations associated with individual joints. For the deep learning
based method, Zhou et al. [20] developed a new layer to realize the non-linear
forward kinematics in human hand pose estimation and obtained geometrically
valid results. Zhou et al. [21] introduced the kinematic structure model for 3D
human pose estimation and demonstrated its effectiveness. In fact, our method
takes the inspiration from this work but have several improvements.

– In the work of [21], the root joint is simply fixed at the origin point and the
bone length is set as the average of the training subject with a global scale.
However, it will reduce the generality of the method and lead to intrinsic
errors because scale is unknown for the test phase. Therefore, we add the
root joint position and bone length as learnable parameters in the network
and optimized with the training data.

– We introduce body bone length and symmetry loss which is able to express
the anatomy prior and also act as intermediate supervision to avoid the accu-
mulation of errors in the kinematic tree.



AG-Pose 231

2.2 Two Stage Methods

While the two-stage methods usually first used a well-trained 2D pose network
to estimate 2D pose positions, then trained a 2D-3D lifting network to further
acquire 3D joint positions [10,22–26]. Thanks to the available of large scale 2D
human pose datasets, these methods were able to acquire accurate 2D pose
results and focused on the 2D-to-3D mapping process.

Fig. 2. Diagram of the proposed anatomy and geometry constrained frame-
work. During training, a pair of images of different views (Ii, Ij) taken from the same
person are sent to the network and acquire the corresponding root joint locations,
rotation parameters and translation parameters. Then with the kinematic computa-
tion module we can compute the joint locations with the predefined process. The output
of the network is optimized by the joint loss, body bone loss and multi-view consis-
tency loss which is implemented by the pose embedding module. During inference, the
network takes a single image as input and output its 3D joint locations.

Chen et al. [22] proposed to first generate a 2d pose result and then estimate
its depth by matching to a library of 3d pose. Martinez et al. [23] used several
residual blocks to learn the mapping from 2D joints to 3D joints, and found
that a large portion of the error of modern deep 3d pose estimation systems
stems from their visual analysis. Li et al. [10] proposed a multi-modal mixture
density network to generate multiple hypothesis of the 3D pose for 2D joints.
Drover et al. [24] utilized an adversarial framework to impose a prior on the 3D
structure which is learned solely from their random 2D projections. Zhao et al.
[27] proposed a semantic graph convolutional network to infer 3D joint locations
from 2D joints.
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3 Method

Given a cropped image I ∈ R
W×H×3, we aim to learn a mapping function θ,

such that θ(I) = PK , where PK ∈ R
3×K is the estimated position of K joints.

We assume that x, y are in image pixel coordinates while z is the relative depth
value to the root joint in camera coordinates.

The diagram of our proposed anatomy and geometry constrained framework
is illustrated in Fig. 2. In this section, we will first introduce the kinematic
computation process and the kinematic structure model. Then we will explain
the bone-length and bone-symmetry loss as well as the multi-view consistency
constraints. Finally we will demonstrate the total loss function for training.

3.1 Kinematic Computation

A human body is composed of joints and bones. Following a kinematic tree
structure, we can reach any position of body joints from root joint with body
structure information.

Suppose that the hip joint is a root node in a tree structure, we can categorize
the body joints into different hierarchies according to the distance to the root
joint. For example, the left hip, right hip and spine joint can be considered as
the second hierarchy because they can reach the root joint without passing any
other joints. Following this idea, we can define six hierarchy levels of human
body joints as illustrated in Fig. 1, the circle dots indicate the 17 body joints
while different colors demonstrate different hierarchy levels in a tree structure.
Besides, we use arrows to define bone structures which start from parent joint
and heads to its child joint.

Following the idea of [21], we can obtain the position of a child joint with its
parent joint’s position and the corresponding rotation and translation matrix in
Eq. 1, where Rp ∈ R

3×3 and Tp ∈ R
3×3 indicate the rotation and translation

matrices and Pparent ∈ R
3×1 is the coordinate of the parent joint. In a similar

fashion, the position Pk of joint k can be represented following the path from
the root joint to itself, where P(k) indicates the set of parent joints along the
way, and Proot is the position of the root joint.

For example, if we want to calculate the 3D positions of the left wrist (lw),
we need to calculate the transformation matrix from the root joint to itself. With
the predefined Eq. 2, we can set P(k) = {left hip (lh), spine (sp), left shoulder
(ls), left elbow (le), left wrist (lw)}. Then the location of the left wrist joint can
be calculated with Eq. 3.

Pchild = (Rp · Tp) · Pparent (1)

Pk = (
∏

a∈P(k)

Ra · Ta) · Proot (2)

Plw = (Rlw · Tlw) · (Rle · Tle) · (Rls · Tls) · (Rsp · Tsp) · (Rlh · Tlh) · Proot (3)
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3.2 Kinematic Structure Model

According to the kinematic computation process, we first design a kinematic
structure model in a deep learning framework which is illustrated in Fig. 2.
Multi-view input images are first passed to a shared backbone network to extract
representative contextual features. Then we use a feature extractor to output
root joint positions Proot ∈ R

3×1, rotation parameters Rp ∈ R
3×K , and transla-

tion parameters Tp ∈ R
K . For the i(th) joint, suppose its translation parameter

is li and the rotation parameter is αi, βi and γi, we can acquire the translation
matrix and rotation matrix with the following equation. Finally together with
the root joint position, Eq. 2 is applied to obtain the 3D joint positions. All
the defined computing process are differentiable which allowed our model to be
trained end-to-end.

Ti=

⎛
⎜⎝

1 0 li
0 1 0

0 0 1

⎞
⎟⎠ , Ri=

⎛
⎜⎝

cos αi − sin αi 0

sin αi cos αi 0

0 0 1

⎞
⎟⎠ ·

⎛
⎜⎝

cos βi 0 sin βi

0 1 0

− sin βi 0 cos βi

⎞
⎟⎠ ·

⎛
⎜⎝

1 0 0

0 cos γi − sin γi

0 sin γi cos γi

⎞
⎟⎠

3.3 Bone-Length and Bone-Symmetry Loss

One drawback of the kinematic structure model is that joint errors may accumu-
late following the kinematic tree. Apart from joint position loss which is usually
adopted in current 3D pose estimation methods, we also calculate the difference
between the predicted bone length and the ground truth which can be consid-
ered as intermediate supervisions [12]. For the k(th) joint, we define its parent
joint’s index as parent(k(th)), then the associated bone can be represented as
Eq. 4. In general, bone representation is more stable and able to cover geometry
constraints [13].

Bk =Pparent(k(th)) − P(k(th)) (4)

Besides, considering that human body is a symmetry structure. As illustrated
in Fig. 3, we define four groups of symmetry bones and make a statistic for
the symmetry bone length errors in Human3.6m dataset [2]. Then, we devise
a loss function to penalize the inequality between the predefined symmetry left
and right parts. These two loss functions are both based on body structure

Fig. 3. Definition of the bone-symmetry loss and the statistic results in Human3.6m
dataset
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information and therefore able to implicitly impose the anatomy prior into the
kinematic structure model.

The total bone loss is defined in Eq. 5, here Lp = {left lower/upper arm, left
lower/upper leg}, Rp = {right lower/upper arm, right lower/upper leg}.

Lbone =
K−1∑

k=1

(‖ B̂k − Bk
gt ‖2)+

4∑

i=1

(‖ ˆBLp(i) − ˆBRp(i) ‖2) (5)

3.4 Multi-view Consistency Constraints

To further explore the geometry relationship between multiple views, we propose
a pose embedding module to represent the latent pose information. To this end,
pose estimation results of the same person at the same time across multiple
views are mapped to a latent space, then we computed the similarity between
the cross-view encoding results. To be specific, suppose the 3D joint estimation
of image i and image j are P i

K ∈R
3×K and P j

K ∈R
3×K . Here we use a residual

block to encode the joint locations into geometry latent vectors g(i)∈R
1×N and

g(j)∈R
1×N , where N is the length of the latent vector. Then we apply a L2 loss

to compute the similarity between two geometry latent representations.
The general idea behind this computation is that P i

K and P j
K should be the

same pose representation under global world coordinate, and then mapped to the
corresponding camera coordinate. In this way, the consistency constraints will
enforce the network to output the same pose embedding results across multiple
views and effectively filter out implausible predictions. Moreover, our training
mechanism doesn’t need camera extrinsic parameters and can be implemented
to any multi-view datasets. In a word, it is a multi-view and self-supervised
method during training, and a single view method during inference.

The loss function is defined in Eq. 6, where F is the multi-view structure
information encoding function, i and j indicate different camera views of the
same person, and P i and P j represent joint positions from camera view i and j.

Lmvc =‖ F(P i) − F(P j) ‖2 (6)

3.5 Loss Function

Our total loss function includes the joint loss, body bone loss and multi-view
consistency loss. Here joint loss Ljoint is defined as the smooth L1 loss between
the predicted and ground truth joint positions.

Ljoint =
K∑

i=1

{
1
2 ( ˆPi(th) − Pi(th)

gt)2 if | ˆPi(th) − Pi(th)
gt |< 1

| ˆPi(th) − Pi(th)
gt | −0.5 otherwise

(7)

And the total loss function is in Eq. 8, where λ and β are loss weights for
body bone loss and multi-view consistency loss, M is the total training samples
and N is the total multi-view training sample pairs.
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L=
M∑

i=1

1
M

(Ljoint(i) + λLbone(i))+
N∑

j=1

1
N

βLmvc(j) (8)

4 Experiment

In this part, we first introduce the datasets and evaluation metrics, then we
will provide the implementation details and augmentation operations during
training. And next we will show the ablation studies as well as comparisons with
the state-of-the-art results.

4.1 Datasets

We conduct quantitative experiments on two publicly available 3D human
pose estimation datasets: Human3.6M dataset and MPI-INF-3DHP dataset. To
demonstrate the generality of the proposed model, we also provide some qual-
itative results on the MPII dataset, which is a challenging public outdoor 2D
human pose dataset.

Human3.6M. [2] is one of the most publicly used dataset in 3D human pose
estimation. It captures 3.6 million images and there are 11 subjects performing
daily activities from 4 camera views in a lab environment. The 3D ground truth
is obtained by the motion capture system and the camera intrinsic and extrinsic
parameters are also provided.

Following the standard, we use subject 1, 5, 6, 7, 8 for training and and
evaluate on every 64th frame for subject 9 and 11. The evaluation metric is the
mean per joint position error (MPJPE) between the estimated and the ground-
truth joint positions after aligning the root position.

MPI-INF-3DHP. [5] is a recently released dataset which includes both indoor
and outdoor scenes. Following the common practice, we use the 3D Percentage
of Correct Keypoints (3DPCK@150 mm) and Area Under Curve (AUC) as the
evaluation metrics.

MPII. [28] is a 2D dataset which provides 22k in-the-wild dataset, we demon-
strate the qualitative results on this dataset to reveal the generality of our pro-
posed method.

4.2 Implementation Details

We use ResNet-50 followed by three deconvolution layers as our backbone net-
work to extract representative features. For the multi-view consistency module,
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Table 1. Ablation study for MPJPE on Human3.6M dataset.

Model Bone loss Multi-view consistency loss MPJPE (mm)

Kinematic Model × × 62.01

� × 58.69

× � 57.33

� � 56.18
∗Here bone loss indicates bone-length and bone-symmetry loss

Table 2. Ablation study for joint location errors on Human3.6M dataset.

Method LShoulder LElbow LWrist RShoulder RElbow Rwrist

baseline 64.8 75.9 96.5 64.9 81.8 102.2

baseline+bone 62.2 75.2 94.4 57.2 69.3 93.8

baseline+bone+mvc 61.3 67.7 85.7 58.2 70.9 89.5
∗Here bone and mvc indicate bone loss and multi-view consistency loss

we adopt a residual block [23] followed by a fully connected layer as the map-
ping function. As for the total loss function weights, we set λ = 1e−3 and
β = 1e−4 after cross-validation experiments. For the Human3.6M dataset, we
randomly select two views from the total four views and form six pairs of multi-
view inputs. In the same way, there are four pairs of multi-view inputs for the
MPI-INF-3DHP dataset.

Input images are cropped with the ground truth bbox to extract the human
body region and then resized to 256 × 256. Augmentation of random rotate and
flip are used for both datasets. Besides we utilize synthetic occlusions [29] to
make the network robust to occluded joints. For the MPI-INF-3DHP dataset,
we also apply clothing and background augmentation.

During training, we use batch size of 64. Each model was trained for 140
epochs with an initial learning rate of 1e−3 which dropped at steps 90 and
120. The ADAM optimizer is used for all the training steps. Our code was
implemented with PyTorch [30] and the proposed model was trained for 8 h
with 2 Nvidia 1080Ti GPUS.

4.3 Experiment Results on Human3.6M Dataset

Ablation Study. We conduct an ablation study to explore the contribution of
the proposed anatomy prior and the multi-view consistency constraints.

The experiment results are demonstrated on Table 1. We notice that multi-
view consistency loss had a very noticeable impact on the precision, and improv-
ing the MPJPE by 4.7 mm. This finding implies that including multi-view con-
straints is able to learn the geometry information and produce more reliable
results.
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Table 3. Ablation study for bone length error in Human3.6m datasets. Here LU indi-
cates left upper, LL indicates left lower, RU indicates right upper and RL indicates
right lower.

Method LU arm LL arm RU arm RL arm LU leg LL leg RU leg RL leg

baseline 10.8 17.3 10.9 17.2 16.0 13.8 14.4 13.1

baseline+bone 10.2 15.5 10.2 20.1 12.9 11.3 12.5 10.9

baseline+bone+mvc 10.6 15.7 9.2 14.6 13.9 9.6 13.0 8.9

Table 4. Ablation study for bone symmetry error on Human3.6M dataset.

Method Upper arm Lower arm Upper leg Lower leg

baseline 11.1 21.9 14.8 11.8

baseline+bone-loss 11.0 22.9 11.0 11.4

baseline+bone-loss+mvc-loss 8.6 14.4 9.7 10.7

Also, bone loss was shown to be of considerable benefit to the result with a
decrease of MPJPE by 3.3 mm, proving the effectiveness of the proposed anatomy
prior constraints.

Discussion. To further analyse the effect of the proposed anatomy and geom-
etry constraints, we also calculate the high-hierarchy joint errors together with
the bone-length and bone-symmetry errors in Human3.6M dataset. The quanti-
tative results are illustrated in Table 2, 3 and 4.

Here we choose six joints which are far from the root joint and analyse the
effect of the proposed two loss functions. We notice that for the right elbow
and right wrist joint, adding bone-length and bone-symmetry loss significantly
reduced the joint location errors, which indicated that bone information was able
to express the anatomy prior and reduce the location errors of the high-hierarchy
joints.

As for the bone length and bone symmetry errors, the results are illustrated
in Table 3. Similarly introducing bone loss and multi-view consistency loss will
eventually lead to smaller errors especially for the legs.

Visualization Results. In Fig. 4, we present some hard examples on the
Human3.6m datasets, and make a qualitative comparison of the visualization
results. These pictures include some occluded and severely deformed actions like
Sitting down and Lying. Our baseline kinematic structure model is already able
to output plausible results. After adding bone loss and multi-view consistency
loss, some details will be further refined. For example, in the fourth picture, intro-
ducing the anatomy prior and multi-view consistency supervision will revise the
unreasonable leg positions of the baseline model. More details are outlined by
the green circles.
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Fig. 4. Some visualization results on Human3.6m dataset. Here bone indicates bone-
length and bone-symmetry loss and mvc indicates multi-view consistency loss. (Color
figure online)

Fig. 5. Qualitative results. The first and second rows show results on MPI-INF-3DHP
dataset, while the third and forth rows demonstrate results on MPII datasets.
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Table 5. Comparison with the state-of-the-art on Human3.6M dataset.

Method Dir Disc Eat Greet Phone Photo Pose Purch

Chen et al. [22] 89.9 97.6 90.0 107.9 107.3 139.2 93.6 136.1

Zhou et al. [21] 91.8 102.4 96.9 98.7 113.3 125.2 90.0 93.8

Rogez et al. [31] 76.2 80.2 75.8 83.3 92.2 105.7 79.0 71.1

Pavlakos et al. [17] 67.4 71.9 66.7 69.1 72 77 65 68

Zhou et al. [6]‡ 54.8 60.7 58.2 71.4 62 65.5 53.8 55.6

Martinez et al. [23] 51.8 56.2 58.1 59 69.5 78.4 55.2 58.1

Yang et al. [8]‡ 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7

Sun et al. [7]‡ 46.5 48.1 49.9 51.1 47.3 43.2 45.9 57

PVH-TSP [32]§ 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0

Trumble et al. [33]§ 41.7 43.2 52.9 70.0 64.9 83.0 57.3 63.5

Ours 51.4 53.0 52.4 66.6 52.9 57.1 46.6 47.5

Method Sit SitD Smoke Wait WalkD Walk WalkT Avg

Chen et al. [22] 133.1 240.1 106.7 106.2 114.1 87.0 90.6 114.2

Zhou et al. [21] 132.1 158.9 106.9 94.4 126.0 79.0 98.9 107.2

Rogez et al. [31] 105.9 127.1 88.0 83.7 86.6 64.9 84.0 87.7

Pavlakos et al. [17] 83 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Zhou et al. [6]‡ 75.2 111.6 64.1 66 51.4 63.2 55.3 64.9

Martinez et al. [23] 74 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Yang et al. [8]‡ 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Sun et al. [7]‡ 77.6 47.9 54.9 46.9 37.1 49.8 41.2 49.8

PVH-TSP [32]§ 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3

Trumble et al. [33]§ 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5

Ours 62.9 92.5 53.0 62.5 52.3 41.6 45.2 56.1
∗Here § indicates multi-view methods, ‡ indicates methods training with extra 2D
Pose Datasets. A lower value is better for MPJPE. The results are taken from corre-
sponding papers. The best results are marked in bold while the second best approach
is underlined.

Comparison with the State-of-the-Art. In Table 5 we compare the pre-
diction results of our proposed 3D pose models with current state-of-the-art
methods. Recall that our models are trained in a multi-view setting without any
camera information and tested in single view, to make a fair comparison, we also
consider results from multi-view input approaches.

Even though our model is trained with only 3D datasets, our method still
outperform most of the benchmark results and is only inferior to the model by
Sun et al. [7] which is a high-memory required heatmap-based model and trained
with extra 2D dataset. Besides, we also make a comparison of the per-action joint
errors and demonstrate the effectiveness of the proposed model.
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Table 6. Comparison with the state-of-the-art results on MPI-INF-3DHP dataset.

Method 3DPCK AUC

VNect [11] 76.6 40.4

Mehta et al. [34] 75.2 37.8

SPIN [35] 76.4 36.1

Ching-Hang Chen et al. [36] 71.1 36.3

LCR-Net [31] 59.6 27.6

Zhou et al. [6] 69.2 32.5

Ours 72.0 37.3
∗A higher value is better for 3DPCK and AUC.
The results are taken from corresponding papers.

We notice that in some actions like purchasing, photoing and sitting where
extensive movements may appear in body parts, our model got the lowest error.
This finding provides compelling empirical evidence for the benefits of our pro-
posed bone loss and multi-view consistency constraints which effectively encodes
geometry structure information and thus reduces implausible results.

4.4 Experiment Results on MPI-INF-3DHP Dataset

MPI-INF-3DHP Dataset contains a mixture of indoor and outdoor scenes in test
set, and we also evaluate our method on this challenging dataset. As can be seen
from Table 6, we achieved a comparable result of 72.0 in 3DPCK and 37.3 in
AUC, which indicated the strong robustness of our proposed model.

Besides, we provide some visualization results on the test set in Fig. 5. Even
in some severely movable action and unseen outdoor scenes, our model still
provides satisfactory results.

4.5 Qualitative Results on MPII Dataset

To demonstrate the cross-domain generalization ability of our proposed model,
we also test our method on the MPII dataset. Note that our model is only
trained on the Human3.6m dataset which contains constrained data in indoor
environment. Since the ground truth 3D pose results are not available, we only
give qualitative results on the third and forth rows of Fig. 5. We can see that
our model can output plausible results and generalize well on unseen scenes.

5 Conclusion

In this paper, we propose an anatomy and geometry constrained one-stage frame-
work which imposes the anatomy prior and fully explore the geometry relation-
ship for 3D human pose estimation. We first define a kinematic structure model
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in a deep learning framework, then we introduce bone loss which utilizes bone-
length and bone-symmetry property to capture the anatomy prior. In addition,
we show that adding a multi-view consistency constraints during training can
improve the performance and reduce implausible results. We conduct quanti-
tative experiments on two 3D benchmark datasets and achieve state-of-the-art
results.
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